Wil je Latent Variable Modeling Using R kopen? · Nog zeker 1 beschikbaar
€64.95 Laagst beschikbare prijs
Het sentiment: Onbekend · Zelf beoordelen
Helaas, het is nog niet bekend wat gebruikers voelen. Het is ook nog onbekend wat de ervaringen zijn op online media. Daarom is het hier nog onbekend hoe Latent Variable Modeling Using R ervaren wordt.
Wat zegt dit?Op shoptiment gebruiken we het woord sentiment. Dit is wat online media en onze bezoekers van een product vinden. Het wordt automatisch berekend aan de hand van de recencies van bezoekers en het sentiment gevonden in online bronnen. Verder op de bladzijde kan je meer details vinden!
Dit product, Latent Variable Modeling Using R, is geplaatst in Boek in Boeken.
Uitgebreide Review Latent Variable Modeling Using R
Het sentiment: Onbekend
In dit gedeelte kan je zien hoe het product ervaren wordt. Dit komt tot stand door de reacties van gebruikers te combineren met de ervaringen en recencies gevonden op online media zoals Youtube.
Gebruikers: Onbekend
Online: Onbekend
Het online sentiment zoals gevonden door ons platform voor Latent Variable Modeling Using R is Onbekend.
Google zoekresultaten lijken in het algemeen Onbekend voor Latent Variable Modeling Using R. Zoeken naar beoordelingen op Google ›
In het algemeen zijn tweets Onbekend voor Latent Variable Modeling Using R. Zoeken naar beoordelingen op Twitter ›
Youtube
Youtube beschrijvingen zijn in het algemeen Onbekend voor Latent Variable Modeling Using R. Zoeken naar beoordelingen op Youtube ›
De teksten, ervaringen en beschrijvingen gevonden in de bovenstaande online media worden bekeken door kunstmatige intelligentie. Door deze uitslag te combineren ontstaat het online sentiment.
Het Sentiment: Onbekend
Nog niemand heeft zijn gevoelens achtergelaten. Het is dus nog onbekend wat gebruikers ervaren. We kunnen weinig online vinden voor dit product! Het is dus helaas onbekend wat het online sentiment is. Er is dus nog weinig bekend over dit product op dit platform, zowel in gebruikerservaringen als in online recensies gevonden door dit platform. Daarom is het sentiment voor dit product neutraal. Heb je ervaring met dit product? Laat dan je gevoelens achter.
De ervaringen van gebruikers samen met het sentiment gevonden online vormt het uiteindelijke sentiment!
Gerelateerde Videos
De onderstaande videos zijn in veel gevallen gerelateerd aan het product. In sommige gevallen, en bij onbekende producten, kunnen mogelijk afwijkende videos worden getoond.
Geen video beoordelingen gevonden.
Eigenschappen Latent Variable Modeling Using R
Producteigenschappen
Inhoud | |
---|---|
Aantal pagina's | 205 |
Bindwijze | Paperback |
Illustraties | Nee |
Oorspronkelijke releasedatum | 06 mei 2014 |
Taal | en |
Betrokkenen | |
Hoofdauteur | A. Alexander Beaujean |
Hoofduitgeverij | Routledge |
Overige kenmerken | |
Extra groot lettertype | Nee |
Product breedte | 216 mm |
Product hoogte | 17 mm |
Product lengte | 279 mm |
Studieboek | Ja |
Verpakking breedte | 217 mm |
Verpakking hoogte | 17 mm |
Verpakking lengte | 280 mm |
Verpakkingsgewicht | 563 g |
EAN | |
EAN | 9781848726994 |
Productbeschrijving
This step-by-step guide is written for R and latent variable model (LVM) novices. Utilizing a path model approach and focusing on the lavaan package, this book is designed to help readers quickly understand LVMs and their analysis in R. The author reviews the reasoning behind the syntax selected and provides examples that demonstrate how to analyze data for a variety of LVMs. Featuring examples applicable to psychology, education, business, and other social and health sciences, minimal text is devoted to theoretical underpinnings. The material is presented without the use of matrix algebra. As a whole the book prepares readers to write about and interpret LVM results they obtain in R.
Each chapter features background information, boldfaced key terms defined in the glossary, detailed interpretations of R output, descriptions of how to write the analysis of results for publication, a summary, R based practice exercises (with solutions included in the back of the book), and references and related readings. Margin notes help readers better understand LVMs and write their own R syntax. Examples using data from published work across a variety of disciplines demonstrate how to use R syntax for analyzing and interpreting results. R functions, syntax, and the corresponding results appear in gray boxes to help readers quickly locate this material. A unique index helps readers quickly locate R functions, packages, and datasets. The book and accompanying website at http://blogs.baylor.edu/rlatentvariable/ provides all of the data for the book’s examples and exercises as well as R syntax so readers can replicate the analyses. The book reviews how to enter the data into R, specify the LVMs, and obtain and interpret the estimated parameter values.
The book opens with the fundamentals of using R including how to download the program, use functions, and enter and manipulate data. Chapters 2 and 3 introduce and then extend path models to include latent variables. Chapter 4 shows readers how to analyze a latent variable model with data from more than one group, while Chapter 5 shows how to analyze a latent variable model with data from more than one time period. Chapter 6 demonstrates the analysis of dichotomous variables, while Chapter 7 demonstrates how to analyze LVMs with missing data. Chapter 8 focuses on sample size determination using Monte Carlo methods, which can be used with a wide range of statistical models and account for missing data. The final chapter examines hierarchical LVMs, demonstrating both higher-order and bi-factor approaches. The book concludes with three Appendices: a review of common measures of model fit including their formulae and interpretation; syntax for other R latent variable models packages; and solutions for each chapter’s exercises.
Intended as a supplementary text for graduate and/or advanced undergraduate courses on latent variable modeling, factor analysis, structural equation modeling, item response theory, measurement, or multivariate statistics taught in psychology, education, human development, business, economics, and social and health sciences, this book also appeals to researchers in these fields. Prerequisites include familiarity with basic statistical concepts, but knowledge of R is not assumed.