Wil je Simulation for Data Science with R kopen? · Nog zeker 1 beschikbaar
€39.99 Lowest available price
Het sentiment: Unknown · Zelf beoordelen
Helaas, het is nog niet bekend wat gebruikers voelen. Het is ook nog onbekend wat de ervaringen zijn op online media. Daarom is het hier nog onbekend hoe Simulation for Data Science with R ervaren wordt.
Wat zegt dit?Op shoptiment gebruiken we het woord sentiment. Dit is wat online media en onze bezoekers van een product vinden. Het wordt automatisch berekend aan de hand van de recencies van bezoekers en het sentiment gevonden in online bronnen. Verder op de bladzijde kan je meer details vinden!
Meestal vind je dit product het onder Boek in Boeken.
Bindwijze
Uitgebreide Review Simulation for Data Science with R
Het sentiment: Unknown
In dit gedeelte kan je zien hoe het product ervaren wordt. Dit komt tot stand door de reacties van gebruikers te combineren met de ervaringen en recencies gevonden op online media zoals Youtube.
Gebruikers: Unknown
Online: Unknown
Het online sentiment zoals gevonden door ons platform voor Simulation for Data Science with R is Unknown.
Google zoekresultaten lijken in het algemeen Unknown voor Simulation for Data Science with R. Search for reviews on Google ›
In het algemeen zijn tweets Unknown voor Simulation for Data Science with R. Search for reviews on Twitter ›
Youtube
Youtube beschrijvingen zijn in het algemeen Unknown voor Simulation for Data Science with R. Search for reviews on Youtube ›
De teksten, ervaringen en beschrijvingen gevonden in de bovenstaande online media worden bekeken door kunstmatige intelligentie. Door deze uitslag te combineren ontstaat het online sentiment.
Het Sentiment: Unknown
Nog niemand heeft zijn gevoelens achtergelaten. Het is dus nog onbekend wat gebruikers ervaren. We kunnen weinig online vinden voor dit product! Het is dus helaas onbekend wat het online sentiment is. Er is dus nog weinig bekend over dit product op dit platform, zowel in gebruikerservaringen als in online recensies gevonden door dit platform. Daarom is het sentiment voor dit product neutraal. Heb je ervaring met dit product? Laat dan je gevoelens achter.
De ervaringen van gebruikers samen met het sentiment gevonden online vormt het uiteindelijke sentiment!
Gerelateerde Videos
De onderstaande videos zijn in veel gevallen gerelateerd aan het product. In sommige gevallen, en bij onbekende producten, kunnen mogelijk afwijkende videos worden getoond.
No video reviews have been found.
Eigenschappen Simulation for Data Science with R
Product Attributes
Inhoud | |
---|---|
Bindwijze | E-book |
Ebook Formaat | Adobe ePub |
Illustraties | Nee |
Oorspronkelijke releasedatum | 30 juni 2016 |
Taal | en |
Betrokkenen | |
Hoofdauteur | Matthias Templ |
Hoofduitgeverij | Packt Publishing |
Lees mogelijkheden | |
Lees dit ebook op | Android (smartphone en tablet), Kobo e-reader, Desktop (Mac en Windows), iOS (smartphone en tablet), Windows (smartphone en tablet) |
Overige kenmerken | |
Editie | 1 |
Studieboek | Nee |
Verpakking hoogte | 26 mm |
Verpakkingsgewicht | 732 g |
EAN | |
EAN | 9781785885877 |
Product Description
Harness actionable insights from your data with computational statistics and simulations using R
About This Book
- Learn five different simulation techniques (Monte Carlo, Discrete Event Simulation, System Dynamics, Agent-Based Modeling, and Resampling) in-depth using real-world case studies
- A unique book that teaches you the essential and fundamental concepts in statistical modeling and simulation
Who This Book Is For
This book is for users who are familiar with computational methods. If you want to learn about the advanced features of R, including the computer-intense Monte-Carlo methods as well as computational tools for statistical simulation, then this book is for you. Good knowledge of R programming is assumed/required.
What You Will Learn
- The book aims to explore advanced R features to simulate data to extract insights from your data.
- Get to know the advanced features of R including high-performance computing and advanced data manipulation
- See random number simulation used to simulate distributions, data sets, and populations
- Simulate close-to-reality populations as the basis for agent-based micro-, model- and design-based simulations
- Applications to design statistical solutions with R for solving scientific and real world problems
- Comprehensive coverage of several R statistical packages like boot, simPop, VIM, data.table, dplyr, parallel, StatDA, simecol, simecolModels, deSolve and many more.
In Detail
Data Science with R aims to teach you how to begin performing data science tasks by taking advantage of Rs powerful ecosystem of packages. R being the most widely used programming language when used with data science can be a powerful combination to solve complexities involved with varied data sets in the real world.
The book will provide a computational and methodological framework for statistical simulation to the users. Through this book, you will get in grips with the software environment R. After getting to know the background of popular methods in the area of computational statistics, you will see some applications in R to better understand the methods as well as gaining experience of working with real-world data and real-world problems. This book helps uncover the large-scale patterns in complex systems where interdependencies and variation are critical. An effective simulation is driven by data generating processes that accurately reflect real physical populations. You will learn how to plan and structure a simulation project to aid in the decision-making process as well as the presentation of results.
By the end of this book, you reader will get in touch with the software environment R. After getting background on popular methods in the area, you will see applications in R to better understand the methods as well as to gain experience when working on real-world data and real-world problems.
Style and approach
This book takes a practical, hands-on approach to explain the statistical computing methods, gives advice on the usage of these methods, and provides computational tools to help you solve common problems in statistical simulation and computer-intense methods.