Wil je Use R!- Computerized Adaptive and Multistage Testing with R kopen? · Zeker 1 voorradig
€71.99 Lowest available price
Het sentiment: Unknown · Zelf beoordelen
Helaas, het is nog niet bekend wat gebruikers voelen. Het is ook nog onbekend wat de ervaringen zijn op online media. Daarom is het hier nog onbekend hoe Use R!- Computerized Adaptive and Multistage Testing with R ervaren wordt.
Wat zegt dit?Op shoptiment gebruiken we het woord sentiment. Dit is wat online media en onze bezoekers van een product vinden. Het wordt automatisch berekend aan de hand van de recencies van bezoekers en het sentiment gevonden in online bronnen. Verder op de bladzijde kan je meer details vinden!
Use R!- Computerized Adaptive and Multistage Testing with R vind je meestal in Boek in Boeken.
Uitgebreide Review Use R!- Computerized Adaptive and Multistage Testing with R
Het sentiment: Unknown
In dit gedeelte kan je zien hoe het product ervaren wordt. Dit komt tot stand door de reacties van gebruikers te combineren met de ervaringen en recencies gevonden op online media zoals Youtube.
Gebruikers: Unknown
De gebruikers ervaren Use R!- Computerized Adaptive and Multistage Testing with R gemiddeld Unknown. Maar wat zijn jouw ervaringen?
Ben jij een gebruiker van dit product? Je kan hier zelf jouw gevoelens en ervaringen achterlaten! Het gemiddelde van alle gebruikers-recensies vormt het sentiment voor gebruikers.
Online: Unknown
Het online sentiment zoals gevonden door ons platform voor Use R!- Computerized Adaptive and Multistage Testing with R is Unknown.
Google zoekresultaten lijken in het algemeen Unknown voor Use R!- Computerized Adaptive and Multistage Testing with R. Search for reviews on Google ›
In het algemeen zijn tweets Unknown voor Use R!- Computerized Adaptive and Multistage Testing with R. Search for reviews on Twitter ›
Youtube
Youtube beschrijvingen zijn in het algemeen Unknown voor Use R!- Computerized Adaptive and Multistage Testing with R. Search for reviews on Youtube ›
De teksten, ervaringen en beschrijvingen gevonden in de bovenstaande online media worden bekeken door kunstmatige intelligentie. Door deze uitslag te combineren ontstaat het online sentiment.
Het Sentiment: Unknown
Nog niemand heeft zijn gevoelens achtergelaten. Het is dus nog onbekend wat gebruikers ervaren. We kunnen weinig online vinden voor dit product! Het is dus helaas onbekend wat het online sentiment is. Er is dus nog weinig bekend over dit product op dit platform, zowel in gebruikerservaringen als in online recensies gevonden door dit platform. Daarom is het sentiment voor dit product neutraal. Heb je ervaring met dit product? Laat dan je gevoelens achter.
De ervaringen van gebruikers samen met het sentiment gevonden online vormt het uiteindelijke sentiment!
Gerelateerde Videos
De onderstaande videos zijn in veel gevallen gerelateerd aan het product. In sommige gevallen, en bij onbekende producten, kunnen mogelijk afwijkende videos worden getoond.
No video reviews have been found.
Eigenschappen Use R!- Computerized Adaptive and Multistage Testing with R
Product Attributes
Inhoud | |
---|---|
Aantal pagina's | 171 |
Bindwijze | Paperback |
Illustraties | Nee |
Oorspronkelijke releasedatum | 04 september 2018 |
Taal | en |
Betrokkenen | |
Co Auteur | Alina A. Von Davier |
Hoofdauteur | David Magis |
Hoofduitgeverij | Springer International Publishing Ag |
Tweede Auteur | Duanli Yan |
Overige kenmerken | |
Editie | Softcover reprint of the original 1st ed. 2017 |
Extra groot lettertype | Nee |
Product breedte | 155 mm |
Product lengte | 235 mm |
Studieboek | Ja |
Verpakking breedte | 155 mm |
Verpakking hoogte | 235 mm |
Verpakking lengte | 235 mm |
Verpakkingsgewicht | 454 g |
EAN | |
EAN | 9783319887357 |
Product Description
The goal of this guide and manual is to provide a practical and brief overview of the theory on computerized adaptive testing (CAT) and multistage testing (MST) and to illustrate the methodologies and applications using R open source language and several data examples. Implementation relies on the R packages catR and mstR that have been already or are being developed by the first author (with the team) and that include some of the newest research algorithms on the topic.
The book covers many topics along with the R-code: the basics of R, theoretical overview of CAT and MST, CAT designs, CAT assembly methodologies, CAT simulations, catR package, CAT applications, MST designs, IRT-based MST methodologies, tree-based MST methodologies, mstR package, and MST applications. CAT has been used in many large-scale assessments over recent decades, and MST has become very popular in recent years. R open source language also has become one of themost useful tools for applications in almost all fields, including business and education.
Though very useful and popular, R is a difficult language to learn, with a steep learning curve. Given the obvious need for but with the complex implementation of CAT and MST, it is very difficult for users to simulate or implement CAT and MST. Until this manual, there has been no book for users to design and use CAT and MST easily and without expense; i.e., by using the free R software. All examples and illustrations are generated using predefined scripts in R language, available for free download from the book's website.
- Provides exhaustive descriptions of CAT and MST processes in an R environment
- Guides users to simulate and implement CAT and MST using R for their applications
- Summarizes the latest developments and challenges of packages catR and mstR
- Provides R packages catR and mstR and illustrates tousers how to do CAT and MST simulations and implementations using R
David Magis, PhD, is Research Associate of the “Fonds de la Recherche Scientifique – FNRS” at the Department of Education, University of Liège, Belgium. His specialization is statistical methods in psychometrics, with special interest in item response theory, differential item functioning and computerized adaptive testing. His research interests include both theoretical and methodological development as well as open source implementation and dissemination in R. He is the main developer and maintainer of the packages catR and mstR, among others.
Duanli Yan, PhD, is Manager of Data Analysis and Computational Research for Automated Scoring group in the Research and Development division at the Educational Testing Service (ETS). She is also an Adjunct Professor at Rutgers University. Dr. Yan has been the statistical coordinator for the EXADEP™ test,and the TOEIC® Institutional programs, a Development Scientist for innovative research applications, and a Psychometrician for several operational programs. Dr. Yan received many awards, including the 2011 ETS Presidential Award, the 2013 NCME Brenda Lyod award, and the 2015 IACAT Early Career Award. She is a co-editor for Computerized Multistage Testing: Theory and Applications and a co-author for Bayesian Networks in Educational Assessment.
Alina A. von Davier, PhD, is Senior Research Director of the Computational Psychometrics Research Center at Educational Testing Service (ETS) and an Adjunct Professor at Fordham University. At ETS she leads the Computational Psychometrics Research Center, where she is responsible for developing a team of experts and a psychometric research agenda in support of next generation assessments. Computational psychometrics, which include machine learning and data mining techniques, Bayesian inferencemethods, stochastic processes and psychometric models are the main set of tools employed in her current work. She also works with psychometric models applied to educational testing: test score equating methods, item response theory models, and adaptive testing.